

TB-55 JY-5500系列 BNC接线盒 使用手册

User Manual Version: V1.0

Revision Date: Nov, 21, 2023

目录

1.	概述	2	
	1.1	产品简介	2
	1.2	产品特点	2
2.	规格	2	
	2.1	电气规格	2
	2.2	适配板卡列表	2
	2.3	Pin定义	2
3.	关于简	[仪科技	. 6
	3.1	简仪科技中国	6
	3.2	简仪科技硬件产品	6
	3.3	简仪科技的软件平台	6
	3.4	简仪科技服务	7
4	声明	8	

1. 概述

1.1产品简介

TB-55是适配于JY5500系列同步数据采集模块的BNC接线盒。模拟输入输出通道通过BNC接口引出,其它通道通过螺丝端子引出。

1.2产品特点

● 板载连接器类型: 68 Pin SCSI II 接口

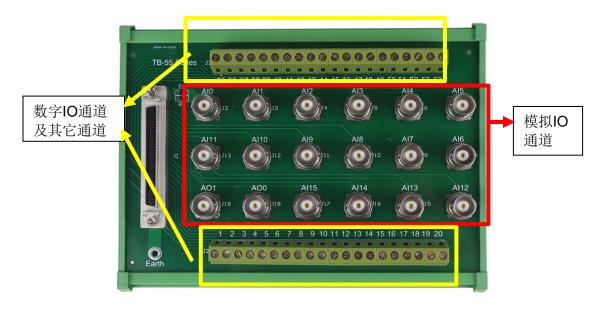
● I/O 接口: BNC, 螺丝端子

● 16通道电压模拟输入

● 尺寸: 160mm x 123mm x 43mm (W x L x H)

2. 规格

2.1 电气规格


接口	68Pin SCSI-II Female
BNC通道数	16
电压输入范围	±10V

2.2 适配板卡列表

平台	支持模块型号
PXIe/PCIe/USB	5510
PXIe/PCIe/USB	5511
PXIe/PCIe/USB	5515
PXIe/PCIe/USB	5516

2.3 Pin定义

模拟输入通道对应接线盒BNC接口标注的通道号即可。其中JY5510/5511有2个Connector共32个通道,Connector0对应通道0-15,Connector1对应通道16-31。

BNC接口定义。

BNC接口	5510/5511 (Con0)	5510/5511 (Con1)	5515/5516
AIO	AIO	AI16	AIO
AI1	AI1	AI17	AI1
AI2	AI2	AI18	AI2
AI3	AI3	A119	AI3
AI4	AI4	A120	AI4
AI5	AI5	A121	AI5
AI6	Al6	A122	AI6
AI7	AI7	A123	AI7
AI8	AI8	A124	AI8
A19	A19	A125	A19
A110	AI10	A126	AI10
A111	AI11	A127	AI11
A112	AI12	A128	A112
A113	AI13	A129	AI13
A114	AI14	A130	AI14
A115	AI15	A131	AI15
A00	A00	A02	A00
A01	A01	A03	A01

螺丝端子接口参考下表Pin定义。

	· SEE SEE SEE SEE SEE SEE SEE SEE SEE SE	川佐久。	
Pin	5510/5511 (Con0)	5510/5511 (Con1)	5515/5516
1	PFI 14 /P5. 6/D0_ECLK	P3. 6	PF114/P2. 6/D0_ELCK
2	PFI 12/P5. 4	P3. 4	P2. 4/PF112
3	PFI 9/P5.1	P3. 1	P2. 1/PF19
4	D_GND	D_GND	D_GND
5	PFI 6 /P4.6/ A0_ECLK	P2. 6	P1. 6/PF16/A0_ELCK
6	PFI 5/P4.5	P2. 5	P1. 5/PF15
7	D_GND	D_GND	D_GND
8	+5V_0UT	+5V_0UT	+5V_0UT
9	D_GND	D_GND	D_GND
10	PFI 1/P4.1	P2. 1	P1. 1/PF I1
11	PFI 0/P4.0	P2. 0	P1. 0/PF10
12	D_GND	D_GND	D_GND
13	D_GND	D_GND	D_GND
14	+5V_0UT	+5V_0UT	+5V_0UT
15	D_GND	D_GND	D_GND
16	P0. 6	P1. 6	P0. 6
17	P0. 1	P1. 1	P0. 1
18	D_GND	D_GND	D_GND
19	P0. 4	P1. 4	P0. 4
20	NC*	NC*	NC*
35	D_GND	D_GND	D_GND
36	D_GND	D_GND	D_GND
37	PFI 8/P5.0	P3. 0	P2. 0/PF18
38	PF1 7/P4.7	P2. 7	P1. 7/PF17
39	PFI 15/P5. 7	P3. 7	P2. 7/PF115
40	PFI 13/P5.5	P3. 5	P2. 5/PF113
41	PF1 4/P4.4	P2. 4	P1. 4/PF14
42	PFI 3/P4.3	P2. 3	P1. 3/PF13
43	PFI 2 /P4. 2/AI_ECLK	P2. 2	P1. 2/PF12/AI_ECLK
44	D_GND	D_GND	D_GND
45	PFI10 /P5. 2/DI_ECLK	P3. 2	P2. 2/PFI10/DI_ECLK
46	PFI 11/P5. 3	P3. 3	P2. 3/PF I 11
47	P0. 3	P1. 3	P0. 3
48	P0. 7	P1. 7	P0. 7
49	P0. 2	P1. 2	P0. 2
50	D_GND	D_GND	D_GND
51	P0. 5	P1. 5	P0. 5
52	P0. 0	P1. 0	P0. 0
53	D_GND	D_GND	D_GND
62	AI_SENSE 0	AI_SENSE 1	A I_SENSE

*NC: Not Connected

P<03>.<07>	数字1/0通道
PFI<015>	功能可编程接口
D_GND	数字信号参考地
AI_SENSE, AI_SENSE<0, 1>	模拟输入信号,适用于NRSE模式
+5V_0UT	+5V电源

计数器Pin定义

5510/5511 (ConO)			
Pin	定义	Pin	定义
11	CTRO_Source/A	42	CTR1_Source/A
10	CTRO_Gate/Z	41	CTR1_Gate/Z
43	CTRO_AUX/B	6	CTR1_AUX/B
2	CTRO_OUT	40	CTR1_OUT
5	CTR2_Source/A	3	CTR3_Source/A
38	CTR2_Gate/Z	45	CTR3_Gate/Z
37	CTR2_AUX/B	46	CTR3_AUX/B
1	CTR2_OUT	39	CTR3_OUT

5515/5516			
Pin	定义	Pin	定义
11	CTRO_Source/A	42	CTR1_Source/A
10	CTRO_Gate/Z	41	CTR1_Gate/Z
43	CTRO_AUX/B	6	CTR1_AUX/B
37	CTRO_ OUT	3	CTR1_ OUT

3. 关于简仪科技

3.1 简仪科技中国

简仪科技有限公司(以下简称:简仪科技)是国内领先的行业测控专家及测控技术专业公司,为各行业用户,尤其是"测试测量、自动化和物联网"高科技企业提供专业测试测量解决方案和成套检测设备。公司成立于 2016 年 6 月,地处上海市浦东新区,简仪科技拥有测试行业资深工程师团队,拥有丰富的测试测量工程经验和多项自主知识产权。

3.2 简仪科技硬件产品

根据简仪科技与我们的合作伙伴 ADLINK Technologies 达成的协议,简仪科技的硬件由位于上海张江高科技园区的先进制造工厂生产。 ADLINK 拥有超过 20 多年的多品种少批量产品制造的世界级专业经验,并通过 ISO9001-2008,中国 3C、UL、ROHS、TL9000、ISO-14001、ISO-13485 认证。其 3 万平方米的工厂设施和 3 条高速松下 SMT 生产线可保证每月可生产 6 万片板卡;它还拥有完整的供应链管理包含规划、扫货、采购、仓储和配送。ADLINK 的卓越制造水平确保了简仪科技的硬件具有一流的制造质量。

我们的核心技术优势是简仪科技追求卓越的软硬件基础技术。比如,简仪科技中国开发了一种独特的 PCIe、PXIe、USB 硬件驱动架构 FirmDrive, 我们的未来硬件将以此为基础。

3.3 简仪科技的软件平台

简仪科技为测试和测量应用开发了一个完整的软件平台——锐视测控平台(SeeSharp Platform)。我们利用开源社区提供软件工具和资源开发。秉承开源理念,我们的锐视测控平台软件也是开源和免费的,从而降低了我们客户的测试成本。 我们是国内唯一提供完整商业软件工具和硬件产品的供应商。

3.4 简仪科技服务

凭借我们完整的软件和硬件产品,JYTEK 能够为广泛的客户提供技术和销售服务。 我们的上海总部和生产服务中心都有定期库存,以确保及时供应;我们在西安和重庆设有研发中心,持续开发新产品;我们在上海、北京、天津、西安、成都、南京、武汉、哈尔滨和长春都有专业的公司直属技术销售代表。我们还有许多合作伙伴在各个城市提供系统级支持。在大多数情况下,我们的产品有 1 年保修。

4. 声明

本手册中描述的硬件和软件产品由 JYTEK China (简称 JYTEK) 提

供,该公司是一家在上海注册的公司,中文名称为"上海简仪科技有限

公司"。

本手册为TB-55 BNC接线盒提供产品说明,快速入门。该手册的版权

归 JYTEK 所有。

对于本手册所有明示或暗示的条款、陈述和保证,包括任何针对特定

用途的适用性或无侵害知识产权的暗示保证、均不提供任何担保、除非

此类免责声明的范围在法律上视为无效。简仪科技有限公司不对任何与

性能或使用本手册相关的伴随或后果性损害负责。本手册所包含的信息

如有更改, 恕不另行通知。

我们会定期更新本手册的内容,但有时会有无法控制的因素影响手册

的准确性。请经常上我们的网站查看最新的手册和产品信息。

上海简仪科技有限公司

Shanghai JYTEK Co., Ltd.

地址: 上海市浦东新区芳春路 300 号 3 幢 201 室

邮编: 201203

电话: 021-5047 5899

网址: www.jytek.com